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A b s t r a c t  

In this paper, we define a subset of Lotos that can be modelled by finite Place/ 
Transition-nets (P/T-nets). That means that specifications in that Lotos subset 
can be translated into finite P/T-nets and validated using P/T-net verification 
techniques. An important aspect of our work is that we show that conversely 
P/T-nets can be simulated in our Lotos subset. It means that the constraints 
we put on Lotos in order to obtain finite nets are minimally restrictive. We may 
also conclude that our Lotos subset and P/T-nets have equivalent computational 
power. To the best of our knowledge, no such bidirectional translation scheme 
has been published before. 

Topics: 
Relationships between net theory and other approaches. 

1. I n t r o d u c t i o n  

In this paper, we define a subset of Basic Lotos [Bolo 87, ISO 88] that can be 
modelled by finite Place/Transition-nets (P/T-nets). That means that specifica- 
tions in that Lotos subset can be represented and translated into finite P/T-nets 
and validated using P/T-net verification techniques. An important aspect of our 
work is that we show that conversely P/T-nets can be simulated in our Lotos 
subset. It means that the constraints we put on Lotos in order to obtain finite 
nets are minimally restrictive. We may also conclude that our Lotos subset and 
P/T-nets have equivalent computational power. To the best of our knowledge, 
no such bidirectional translation scheme has been published before. 

The problem of modelling process-oriented languages, and more specifically 
CCS and CSP like languages, by Petri nets has been tackled by several authors. 
Cindio et al. [Cind 83], Degano et al. [Dega 88], Glabbeek [Glab 87], Goltz 
[Golt 84a, 84b, 88], Nielsen [Niel 86], Olderog [Olde 91] and Waubner [Taub 89] 
considered CCS or CSP, or both. Lotos has been worked by Marchena and 
Leon [Marc 89], and Garavel and Sifakis [Gara 90]. The approaches may be 
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categorized based on the following criteria: i) style of definition, ii) finiteness of 
the representation, and iii) distinction of concurrency and nondeterminism. 

One of two definition styles may be adopted, namely denotational or opera- 
tional. A denotational style is used in: [Cind 83], [Gara 90], [Glab 87], [Golt 84a, 
84b, 88], [Niel 86], [Marc 89] and [Taub 89], whereas an operational style, s la 
Plotkin, is used in: [Dega 88], [Olde 91] and in the present paper. In opposition 
to the operationM approach, the denotational style is constructive. It means that 
the definition yields directly to a procedure for translating terms of the process- 
oriented language to Petri nets. However, we shown in [Barb 91a, b] that thanks 
to our operational definition an important P/T-net verification method can be 
adapted to Lotos without even translating the latter to the former. 

Another important matter is whether or not the Petri net representation of 
the process-oriented language is finite. It is well known that an unbounded num- 
ber of Petri net places and transitions is required to represent a process-oriented 
language when recursion is combined with parallel composition, sequential com- 
position, hiding and disabling operators. This difficulty means that it is impos- 
sible to transfer to the process-oriented language several important verification 
techniques elaborated for Petri nets, since they require finite nets. Note that in 
our mind, finite nets does not mean finite state systems. Finite representations 
can be obtained by restricting the process-oriented language or using high-level 
Petri net models. Finite representations for subsets of CCS are proposed in [Golf 
88], using P/T-nets, and in [Taub 89], using Predicate/Transition-nets, which is 
a high-level model. Finite extended Petri nets are generated from Lotos, with 
the finite control property, in [Gara 90], this work is also interesting because the 
data part of Lotos is also handled. In this paper we define a subset of Basic 
Lotos, with syntactical constraints, that can be modelled by finite P/T-nets. 

Non distinction of concurrency and nondeterminism means that Lotos ex- 
pressions such as a; stoplllb; stop and a; b; stop~b; a; stop have the same semantic 
interpretation. Distinction of concurrency and nondeterminism allows accurate 
representation of behaviors by partial orders. It is a representation that shows 
just natural dependencies between actions. Multi-sets of actions are possible 
in a single transition. This has an impact on treatment of fairness problems 
[Reis 84]. Our Place/Transition-net semantics is less attractive, than definitions 
described in Refs. [Dega 88], [Colt 88], [Niel 86] and [Olde 91], with respect to 
distinction of concurrency and nondeterminism. 

An important feature in our approach is that we show that P/T-nets can be 
simulated in our Lotos subset. Other authors have proposed simulations of Petri 
nets in languages such as Prolog, Azema et al. [Azem 84], or Meije, Boudol et 
al. [Boud 85]. These simulations are not in languages that have been shown 
translatable into finite Peo nets. The goal of Azema et al. is to use Prolog as a 
simulation tool for Petri nets whereas the aim of Boudol et al. is to provide a 
textual representation for Petri nets. Translation into Lotos of another graphical 
representation for behaviors, called Process-Gate Network, is described [Bolo 90]. 

In Section 2, we introduce the P/T-net  model. Our Basic Lotos subset that 
can be translated into finite P/T-nets is called PLotos and is defined in Section 
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3. In Section 4, we discuss modelling of PLotos by P/T-nets.  The converse 
simulation is presented in Section 5. We conclude in Section 6. 

2.  P / T - n e t s  

We represent a P/T-net  [Pete 81] as a tuple (P, T, Act, Mo) where: 

�9 P,  is a set of places {Pl, . . . ,P,}, 

�9 T C_ .A[ "P x Act • Af P, is a transition relation, 

�9 Act, is a set of transition labels, and 

�9 M0 E A/"P, is the initial marking. 

A P/T-net  is f in i te  if the sets P,  T and Act are finite. 
Af is the set of non-negative integers. A/"P denotes the set of multi-sets over 

the set P. An element t = (X,a ,Y)  E T i s  also denoted a s X - a  ~ Y. Its 
p r e se t  pre(t) is X, p o s t s e t  post(t) is Y and ac t ion  act(t) is a. The multi-sets 
X and Y are also called respectively the input and output places of t. We denote 
as pre(t)(p) (post(t)(p)) the number of instances of the element p in the preset 
(postset) of t. 

The operators <, + and - denote respectively multi-set inclusion, sum- 
mation and difference. A multi-set X can also be seen as the formal sum: 
x = Ep p p e(t)(p)p. 

A Petri net marking is also a multi-set. We denote by M(pi) the number of 
instances of the element pi in the multi-set M. Instances of the element pi are 
also called tokens inside place pi. 

pre(t)(p) is the number of tokens that  place p must contain to enable tran- 
sition t. A transition t E T is e n a b l e d  in marking M if pre(t) <_ M. This 
is denoted as M(t  :>. An enabled transition can be f i red  and the successor 
marking M ~ is defined as: 

M' = M - we( t )  + post(t) 

this is represented as M(t  > M'.  
We define the r e a c h a b i l l t y  g r a p h  of a P/T-net  N = (P, T, Act, Mo) as a 

graph RG(N) = (RS, E, Mo) where: 

1. RS is the reachability set, i.e. a set of markings of N, 

2. E C_ RS  • Act • RS, is a transition relation, and 

3. for all M E RS, t E T, if M(t  > M'  then M'  E RS  and (M, act(t), M') E 
E. 
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3. Def ini t ion of the  Syntax  of PLotos  

In this section we define the syntax of a subset of Basic Lotos, namely PLotos 
which is equivalent, in terms of computational power, to finite P/T-nets  (to be 
shown formally in Section 4). First, we discuss Basic Lotos. Then, we define 
PLotos as Basic Lotos along with syntactical constraints. The syntax of Basic 
Lotos is given in Ref. [Bolo 87] and in Appendix A. 

It is well known that  Basic Lotos has the computational power of 3bring 
machines. Our aim is to reduce the power of Basic Lotos to the one of P /T-  
nets. Before we state the syntactical constraints that  make PLotos equivalent 
to P/T-nets,  we define preliminary concepts. 

The "calls" relation 

Let Pl be a process and Bpl its defining behavior-expression. We say that  Pl 
calls P2 if B w has one or more occurrences of P2. This relation is denoted as: 

C = {(Pl, P2) :Pl calls P2} 

The mutual  recursion relation 

Let C + be the transitive closure of C. We define in terms of C + the m u t u a l  
recursion relation (1) as follows: 

: { ( P l , P 2 ) :  (Pl,P2) ~ C'/r" A (P2,Pl) E C + } 

Recursive process 

The process p is recursive if (p, p) 6 (I). 

Functionality 

The functional i ty  of a behavior B is equal to exit iff every alternative in B 
terminates with the successful termination action ~, otherwise it is equal to 
noexi~ [Bolo 87]. 

Context  

A Lotos context  C[ ] is a Lotos behavior-expression with a formal "behavior- 
expression" parameter denoted as "[ ]". If C[] is a context and B is a behavior- 
expression then C[B] is the behavior-expression that  is the result of replacing 
all occurrences of "[ ]" in C[ ] by B. For example, let C[ ] be the Lotos context 
g; [ ]. The behavior-expression C[stop] is defined as g; stop. 

Guarded process 

A process instantiation term p is guarded if it occurs in any of the following 
forms: 
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�9 q[a;  C2N] 

�9 G[B  >>  C2N] 

�9 61 [B[> C N] 

where C1[ ] and C2[ ] are any contexts, a is any gate identifier and B is any 
behavior-expression. 

P L o t o s  

PLotos is defined as the subset of Basic Lotos that satisfies the following syn- 
tactical constraints: 

1. Terms that instantiate recursive processes must be guarded. 

2. Operands B1 and B2 in a parallel composition BIlIIB2 must have the noexil 
functionality. 

3. Let C1[] and C2[] denote two contexts and B denote a behavior-expression. 
For any pair (Pl,P2) E �9 the defining behavior-expression of Pl may not 
have the following patterns: 

3.1 C1 [C2 [p2] * B], where the operator %" is either "l[gl, ..., gn]l" or "> >" 
or ~[~" 

3.2. Cl[Bl[gl, ..., gn]]C2[p~]] 

3.3 Cl[hide gl, ...,g,~ in C2[p2]] 

4. The behavior-expression B1 must have the exit functionality in behavior- 
expressions of the forms: B1 >>  B2 or BI[> B2. 

Mutual recursion is possible in sub-terms of the form "BIIIIB2", with operands 
of functionality noexit (i.e. constraint 2). The control is not finite state but can 
be represented by a finite P/T-net. It is possible to simulate an arbitrarily large 
stack if the constraint 3.1 is unsatisfied (e.g. [Gotz 86]). Arbitrarily large stacks 
cannot be simulated by finite P/T-nets. 

PLotos has the computational power of finite P/T-nets. That is, every PLo- 
tos specification can be modelled by an equivalent finite P/T-net. Conversely, 
every finite P/T-net can be modelled by an equivalent PLotos specification. 
In Section 4, we show how a PLotos specification can be modelled by a finite 
P/T-net. The converse is demonstrated in Section 5. 

4. P / T - n e t  S e m a n t i c s  f o r  P L o t o s  

4 .1 .  G e n e r a l  I d e a  

Our PLotos to P/T-nets mapping is inspired by the work of Olderog [Olde 91] 
for CSP. In general, a Lotos behavior-expression B represents the composition 
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of several concurrent components. In our simulation of PLotos by P/T-nets, the 
expression B is explicitly decomposed into its components which become tokens 
when this behavior is activated. More precisely, parallel components and states 
of parallel components are respectively modelled by Petri net tokens and places. 
The place in which a token is contained denotes the state of the corresponding 
component. Every Lotos gate occurrence is modelled by a Petri net transition. 
Tokens, contained in the transition input places, represent components synchro- 
nized on the gate. Tokens deposited into the transition output places represent 
the successor components after the transition has occurred. Several tokens, con- 
tained in the same place, represent several identical components. This models 
unbounded process instantiation with finite P/T-nets. 

For example, the Lotos expression u; v; stop[[u][u; stop represents two con- 
current components. The first component executes actions u and v and then 
stops. The second component executes action u and becomes inactive. Both 
components are coupled on gate u and are therefore dependent on each other 
with respect to the occurrence of u. The decomposition of u; v; stop[[u][u; stop 
into its components is denoted as the multi-set {u; v;stop[[u][, [[u][u; stop}. In 
this syntax, we represent explicitly the fact that the components are coupled on 
gate u by concatenating the symbol [[u][ to the right of u; v; stop and to the left 
of u; stop. 

Places modelling states of components are labelled by the corresponding 
component-expressions. Transitions are labelled by gate names. The "stop" ex- 
pression represents inaction and does not appear in the P/T-net. In our construc- 
tion, edges from places to transitions are always one valued (i.e. (Vt, p)[pre(t)(p) 
equals 0 or 1 ]) and every place has a distinct label. We unambiguous ly  de- 
no te  a place by its label. /,From the above multi-set of components, it is 
possible to derive the transition represented as the triple: 

{u; v; stopl[u]l, I[u]t ; s t o p }  - - -  {v; stopl[ ]l} 

To derive such triples, we define: i) a function decomposing PLotos behavior- 
expressions into component-expressions, and ii) a system of inference rules. The 
head of each rule matches a term of the form: 

{Pl, ...,Pm} -- a ~ {ql, ...,qn} 

Such a rule can be applied to infer, as a function of the component-expressions, a 
transition with preset {Pl, ..., P,~}, action a and postset {ql,..., q,@ For instance, 
the rule: 

i f M l - a ~ M ;  a n d a ~ { S ,  6} 
then MI.[[S][ - a ~ M~.[[S][ 

is used to infer the transition: 

{v; stopl[ ]l} - v --,  {} 

We substituted {v; stop}, u and v to respectively M1, S and a. M[ is empty 
because the decomposition of "stop" is defined as the empty set. 
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We introduce the decomposition function in Section 4.3 then we present, in 
Section 4.4, the inference rules. But first, in Section 4.2 we translate Lotos 
specifications in a form that makes easier development of consistency proofs. 

4 .2 .  N o r m a l  F o r m  Specifications 

PLotos specifications are rewritten into simpler forms, called normal form spec- 
ifications. Sub-terms in which mutual recursion does not occur are expanded, 
that is, process definitions are substituted for process calls. Then we distinguish 
every parallel composition Bll[gl , . . . ,gn]lB2 by labelling the operator with an 
unique value k. This is represented as I[gl, ..., gn]lk. For example: 

p rocess  pl [a, b, c] : noexi t  := 
(p2 [a, bill Ip2[a, b])Dc; pl[a, b, c] 

e n d p r o c  
process  p2[a, b] : noexi t  := 

a; b; stopl[a]la; stop 
e n d p r o c  

is rewritten as: 

p rocess  pl[a, b, c] : noexi t  := 
((a; b; stop I[a]]1 a; stop) ll I(a; b; stop lie] 12 a; stop))Be; Pl [a, b, c] 

e n d p r o c  

Static relabelling instead of dynamic relabelling is performed when pro- 
cess instantiation terms are substituted by the corresponding defining behavior- 
expressions. This issue is further discussed in Section 4.3. 

As discussed in Section 4.1, with the small example: {u; v; stopl[u]] , ][u]lu; stop}, 
every general parallel composition is decomposed into two or more component- 
expressions during the PLotos to the P/T-net modelling process. Labelling of 
general parallel operators with a unique value is required to preserve important 
contextual information of component-expressions. This information is required 
to unambiguously determine which component-expressions need to be synchro- 
nized together. 

4.3. Decomposition F u n c t i o n  

The decomposition function is denoted as dec. Its domain is the set of well- 
formed PLotos behavior-expressions. Its range is the set of all possible finite 
multi-sets of component-expressions. 

Let B1, B2 denote syntactically correct PLotos behavior-expressions, a de- 
note an action name and S --- gl, ...,gn a list of synchronization gates, the de- 
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composition function dec is defined 

(dl)  dec(stop) 
(d2) dec(a; BI) 
(d3) dec(B1DB2) 
(d4) dec(p[gl,..., gn]) 
(d5) dee(Bill[B2) 
(d6) dec(B1][S]]kB2) 
(d7) dec(B1 > >  B2) 
(d8) dec(B1 [> B2) 
(d9) dec(hide S in BI) 
(dlO) dec(exit) 

where: 

as follows: 

:={} 
:= {a; B1} 
:= {BlaB2} 
:= dec( Bp[gl/hl, ..., gn/hn]) 
:= dec(B1) + dec(B~) 
:= dec(B1). I[S]lk + I IS] Ik.dec(B2) 
:= {B1 > >  B2} 
:= {Bi[> B2} 
:= hide S in.dec(Bi) 
:= {exit} 

�9 in (d4), Bp represents the body of process definition p, 

�9 gl, ..., gr~ is a list of actual gates, 

�9 hi, ..., h,~ is a list of formal gates, 

�9 [gl/hl, ..., g~/h~] is the relabelling postfix operator, gate hi becomes gate 
gi (i = 1, ..., n), and 

�9 the expression dec(B1).l[S]lk denotes {xl[S]lk :x  E dec(B1)}, similarly for 
I[S]lk.dec(B2) and the expression hide S in.dec(B1) denotes {hide S in x: 
x E dec(B1)}. 

The dec function is deterministic, taking into account operator precedences 
given in [ISO 88]. The restriction to guarded recursive processes (see Section 3) 
is required to stop recursion in the dec function. 

The relabelling operator is not user accessible and exists for the semantic 
description of process instantiation. In Lotos, relabelling is dynamic; gates are 
renamed at the execution time. For instance, let us consider this process defini- 
tion: 

p r o c e s s  p[a, b] : n o e x i t  := 
a; stopl[a , b]lb; s top  

e n d p r o c  

Instantiating p with p[a, a] yields an inactive process with dynamic relabelling, 
since the expression a;stop][a,b]lb ;stop is inactive. Nevertheless, with static 
renaming p[a,a] yields the expression a; stopl[a,a]ta; stop which may perform 
the action a and becomes inactive. 

It can be shown easily that for injective relabelling operators, static and 
dynamic relabelling are equivalent. For the sake of simplicity, hereafter we con- 
sider solely injective relabellings and perform static renaming, that is syntactical 
substitution. We believe that this restriction is not significant, at least from a 
computational point of view, and it is fulfilled in many applications. 
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4.4.  Inference  Ru le s  

This section exposes the inference rules of our PLotos to P/T-nets  mapping. The 
P/T-ne t  N -- (P,  T,  Ac t ,  M0), with reachability set R S ,  associated to a PLotos 
behavior-expression B is defined as: 

. �9 Mo = dec (B)  

* M o E R S  

�9 (Vp)[Mo (p) > 0 ::~ p E P] 

2. i f M E R S a n d X < M a n d X - a - - * Y t h e n  

* (Vp)[Y(p)  > 0 ::~ p E P] 

. ( X , a , Y )  e T 

�9 a E A c t  

. M I = M - X + Y  

�9 M '  E R S  

3. only the elements that  can be obtained from items 1 or 2 are in P, T and 
Ac t  

The transition instances are inferred from the rules below. For all PLotos 
behavior-expressions B1, B~, B2, B~, action name a, list S = g l , . . . , gn  of syn- 
chronization gates and component-expression multi-sets M1, M2, M~, M~: 

(rl) 
(r2) 

(ra) 

(r4) 

(rS) 

(r6) 

(r7) 

(r8) 

(r9) 

(rl0) 

( r l l )  

{a; B1} - a ---* dec(B1) 

if B1 - a -+ B~ 
then {BlaB2} - a --~ dec(B~) 

if B2 - a --* B~ 
then { B I ~ B ~ }  - a ~ dee(B~) 

i f M l - a ~ M ~  a n d a ~ { S ,  5} 
then MI.I[S][k - a ~ M~.I[S][k 
if M2 - a --+ M~ and a ~ {S, 5} 
then I[S][k.M~ - a --+ I[S]I~.M~ 
i f M l - a ~ M ~  a n d M 2 - a - - - M ~ a n d a E { S , 5 }  
then MI.[[S]Ik + [[S]]~.M2 - a --+ M~.I[S]Ik + I[S][k.M~ 
if B1 
then 
if B1 
then 
if B1 
then 
if B1 
then 
if B2 
then 

- -a - -~BI1  and a r  
{B1 > >  B ~ } -  a ~ {B~ > >  B2} 

{B1 > >  B2} - i ~ dec(B2)  
- a - - * B ~  a n d a r  
{BI[> B.q - a B2} 
-5~B~ 
{BI[> B2} - 5 -+ dec(B~) 

- a - - - ~  B~ 

{BI[> B2} - a ---* dec(B~) 
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(r12) if M1 - a --+ M~ and a ~ {S} 
then hide S in.M1 - a ---+ hide S in.M~ 

(rl3) if M1 - a ~ M~ and a E {S} 
then hide S in.M1 - i ~ hide S in.M~ 

(r14) {exit} - 5 ~ {stop} 

In the "if part" of inference rules (r2), (r3), (rT) (r8), (r9), (rl0) and ( r l l )  
behavior B1 (B~) makes a transition to behavior B~ (B~) on action a or 5 in 
accordance with the original Basic Lotos semantics. 

T h e o r e m  1 (Boundedness theorem) PLotos can be modelled by a finite P / T -  
net. 

We must show 3 that  any PLotos normal form specification: 

s p e c i f i c a t i o n . . ,  b e h a v i o r B 0 . . ,  e n d s p e c  

can be modelled by a P /T-ne t  N = (P, T, Act, Mo) whose sets P,  T and Act are 
finite (note that  the associated teachability set R S  is not necessarily finite). 

In the sequel, the operators in component-expressions are classified as follows: 

�9 s top,  exi t ,  and pig1, ...,gn] are nullary operators. 

�9 I[S]lk, and h ide  S in are unary operators. 

�9 ";", ">>" and "[>" are binary operators. 

Note that  the operator "111" never appears in a component-expression. 
(The set Act is finite). In a normal form PLotos specification there is a finite 

number of gates. Lotos gates are translated to P/T-net  transition labels, i.e. 
elements of Act. Consequently, the set Act is finite. 

(The set P is finite). The statement "The set P is finite" is equivalent to 
the statement: 

S1: There exists a K such that  for all p E P, the number of 
nullary operators in p is less than K. 

This equivalence is a consequence of the conjunction of the following facts (let 
us suppose that  we distinguish, in the normal form specification, every operator 
from the others): i) The set of gates and nuUary, unary and binary operators, 
that  can possibly be used in a component-expression is finite, ii) Every unary 
or binary operator is used at most once in a component-expression, iii) Using 
a finite number of gates and nullary, unary and binary operators, and zero or 
one occurrence of every unary or binary operator, there is a finite number of 
syntactically different component-expressions that can be constructed. 

The negation of statement $1 is the following statement: 

3The proof technique is similar to the one used in [Gara 89]. 
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$2: It is possible to infer from dec(Bo) a component-expression p 
in which there is an unbounded number of nullary operators. 

Statement $2 implies that  there exist processes pl,p2 with: 

a marking: 

(Pl,P2) E 

M ,  E R S  

and a component-expression p with: 

p E M,~ 

where there is a nullary operator who occurs an unbounded number of times 
in p. This unbounded number of occurrences is due to the substitution of re- 
cursive instantiation terms of Pl by its defining behavior-expression Bpl of Pl. 
Nonetheless, this true solely if Bp1 has one of the following patterns: 

�9 C1[C2[p2] * B], where the operator " ."  is either "][gl, ..., g,~]l" or " > > "  or 
u[>~. 

�9 Cl[Bl[gl,...,g,]]C2~2]]. 

�9 C1 [hide gl, . . . ,gn in C2[p2]] 

where Cl[ ] and C2[ ] denote two contexts and B denote any behavior- 
expression. However, these patterns ar disallowed in PLotos (see Section 3). 

(The set T is finite). This follows from the fact that from a finite set of 
syntactically different component-expressions, application of the inference rules 
can derive a finite number of transitions. 

The next theorem states that  the P/T-net  semantics is in accordance with 
the original semantics of Lotos. 

T h e o r e m  2 (Consistency theorem) The Petri net semantics of Lotos is consis- 
tent with the standard Lotos semantics. That is, for all PLotos behavior expres- 
sion B, marking M with dec(B) := M:  

1. [B - a ---+ B'] ~ (3M' ) (3 t ) [M( t  > M'  A act(t) -= a A dec(B')  := M'] 

2. [M(t > M'] ~ (3B')[B - act(t) -+ B'  A dec(B')  := M'] 

The proof is by induction on the number of operators in a behavior-expression 
B and refers to the standard Lotos semantics in Refs. [Bolo87] and [ISO88]. 

Def in i t i on  1 Two graphs A1 = ($1, El, nl )  and A2 = (S~, E2, n2) are b l s imu-  
lar [Park 81] if there exists a relation R C_ S1 X $2, called a bisimulation relation, 
with: 

1. (nl, n2) c R, and for aU (., m) e R 
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2. [(n, a, n') e El] ~ (3m')[(m, a, m') e E2 ^ (~', m') e R], and 

3. [(m, a, m') E E2] ~ (Sn')[(n, a, n') E E1 A (n', m') E R]. 

Corol la ry  1 Let B be a PLotos behavior-expression, with transilion graph TG, 
and let N = (P,T, Act, Mo) be the associated P/T-net wilh reachability graph 
RG(N).  The dec funelion is a homomorphism from TG reachability set to 
I~G(N) reachability set. TG and RG(N) ave blslmular under the bisimu- 
lation relation R defined as: 

1. (B, Mo) E R, and 

2. For all B' in the TG teachability set and for all M in RG( N) reachability 
set: 

(B', M) E R ~ dec(B') := M 

The dec function is a graph homomorphism because it identifies equiva- 
lent Lotos behavior-expressions BIlIIB2 with B2IIIB1, and B1]II(B21[IB3) with 
(BII]]B2)I]IB3. These equivalences are in accordance with the commutativity 
and the associativity laws in [[SO 88]. Solely syntactic nature information is 
lost, "dec" preserves all semantic properties. This can be illustrated by the 
following commutative diagram: 

B -dec --* M 

I I 
a a 

B' -dec---, M' 

5. Simulation of P /T-ne t s  in PLotos 

In Section 4, we identified a subset of Lotos, PLotos, that can be modelled 
by finite P/T-nets. In this section, we show that conversely P/T-nets can be 
simulated by PLotos. These two facts lead to the conclusion that PLotos and 
P/T-nets are equivalent models, that is models with equivalent computational 
power. 

We make two reasonable hypotheses. First, we simulate in PLotos, P/T-nets 
whose place to transition edges are one valued, i.e.: 

(Vt,p)[pre(t)(p) equals 0 or 1] 

This restriction is not a handicap because it has been proved [Kasa 82] that 
P/T-nets of arbitrary edge valuation can be simulated by P/T-nets whose edges 
are all valued to one, with language equality equivalence. 

Second, we assume that no place is simultaneously in the preset and the 
postset of a single transition. This restriction is not significant. P/T-nets with 
circuits made of one place and one transition can be simulated by circuit free 
(pure) P/T-nets [Sram 83]. 
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Before we go into detail, we give a brief overview of the simulation. Given 
a P/T-net g = (P, T, Act, M) with set of places P = {Pt,...,Pn), we define a 
PLotos process Ni,n with equivalent behavior. That is, the reachability graph 
of N and the transition graph of Nt,n are bisimular. The process Ni,n is defined 
inductively on the number n of places. 

Every transition t E T is mapped to a Lotos gate, also named t. Every place 
Pi E P is mapped to three PLotos processes, namely tokeni, Pi and Pi(k). The 
process tokeni models a token inside the place pi. It participates in actions that 
occur at gates corresponding to outgoing transitions of the place Pi. Instances 
of tokeni are created by the process pi when the place pi incoming transitions 
are fired. 

The process Pi(k) models place Pi containing k tokens and is defined as the 
independent parallel composition of one instance of process Pi and k instances of 
process tokeni. Simulation of a place pi in PLotos is further discussed in Section 
5.1 (with an example in App. B). 

The whole PLotos model of the P/T-net N, with current (or initial) marking 
M is defined inductively. The PLotos model Nt,t of N, restricted to place Pi, 
is defined as the process Pi(M(1)). 

The model Ni,i of N, restricted to places Pi, ...,Pi, is defined as the parallel 
composition of the process Ni,i-i  that models N restricted to places Pi,..., Pi-i 
and the process Pi(M(i)). These two processes are synchronized on the set 
of transitions that place Pi shares with places Pi, ...,Pi-1. This construction is 
presented formally in Section 5.2 (with an example in App. B). 

5.1 Modelling of Places 

Let g = (P,T, Act ,M) be a P/T-net with P = {Pi, ...,Pn) and T = {tl, ...,tin}. 
We first discuss how tokens inside places are represented by Lotos processes. 

Given place Pi E P, let: 

�9 F-i(pi) = {tr : post(tl)(pi) > 0}, transitions that deposit tokens into 
place Pi 

�9 r(pi) = {to :pre(to)(pi) > 0}, transitions that extract tokens from place 
Pi 

�9 T(X)  = [.Jp,ex (r(pi) t2 F-l(pi)), transitions connected to places in Z 

A token inside place Pi can participate in the firing of a transition in F(pi). 

Defini t ion 2 Let r(pi) = {to1,  . . . , to~} ,  a token inside place pi is represented 
as the following PLotos process: 

process tokeni[tol, ..., tov]:noe~it:-- 
toi ; stop D...~tov ; stop 

endproc 

/ fF(pi)  is empty, then the body oftokeni is stop. Let F-i(pi) = {txl, ...,Qu}, 
the place Pi is modelled by the following process: 
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process  Pi [tll . . . .  , Qu, to1, . . . ,  toy] :noex i t := 
t~; (.(tok~n~[to~. ,to~]ll[ I l l t~  to~]) 

(* post(t.)(p~) ti~es *) 
III 
Pi [tel,..., t in,  t o l ,  ..., tov]) 

B..B 
t l u ;  ( ( t oker t i  [to1,'", to~]lll""" II Itot~em [to ~ , ..., to ,  ]) 

(* post( tIu)(pi)  t imes *) 

III 
Pi[t I1, "", t lu, tOl , ".', tOy]) 

endpro c  

Note that  recursive calls to Pi are guarded and allowed in a pure interleaving. 
Informally, this says that  when an input transition of place Pi is fired, either t l l  
or ... or Qu, then tokens are deposited inside place Pi (instances of process 
tokeni  are created). These new tokens can enable and fire transitions in P(Pi). 
If F - l ( p i )  is empty, then the body ofpi  is stop. 

The next lemma demonstrates the consistency of the PLotos model of a place. 

L e m m a  1 Let, for k 6 N', Pi(k) denote the place Pi containing k tokens, mod- 
elled as the PLotos processes 4. 

For all k 6 Af : 

P~(O) : p~ 
P~(k) =tokeni[[[P~(k- 1) i l k  > 0 

P~(k) - t - p r  

V 

[(t 6 r -Z(p i )  A p = Pi(k + post(t)(pi))) 
(k > OAt  C I'(pi) Ap  = P i ( k -  1))]. 

The proof is by induction on k. 

5 . 2  M o d e l l i n g  o f  P / T - n e t s  

The model of a P / T - n e t  in PLotos is also defined inductively. We first consider 
unlabelled P/T-nets .  For 1 < i < n, we denote by: 

Nl,i  = ( Pl,i , Tl,i , MI,, ) 

the subnet of N -- (P, T, M) restricted to places {Pl, ...,Pi} where: 

* Pl , i  = { P l , . . . , P l }  

* Tl,i = {(X, act(t),  Y ) :  t 6 T A X = 2pePs. ,  pre(t)(p)p 
A Y = 2veP~,,  post( t )(p)p A ( X  # {} V Y # {})} 

4 For the sok, e or readability, we omit gate-tuples. 



63 

�9 MI,~, the marking M restricted to places in Pl,i 

Note that  NI,~ = N. We denote by Ml, i ( i )  the number of tokens inside place p~ 
for the marking Ml,i. 

Def in i t ion  3 For 1 < i < n, the subnel Nl, i  is modelled by a PLolos process 
named Nl , i (Ml , i )  defined as: 

p roces s  NI,I ( MI,1)[t l , ..., to~ ] :noez i t := 
P1 (MI,1 (1)) 

endproc 

For i > 1, N l , i (Ml , i )  is defined as: 

p roces s  g l , i (  Ml,i )[Q , ..., trn ] :noe~i t := 
Pi (Ml , i ( i ) )  ][T({pl}) N T({pl,-..,Pi-1})]] g l , i - l ( M l , i - 1 ) [ t l , . . . ,  tin] 

endproc 

Note that,  for i = 1, ..., n, NI,i(MI,i) is not recursive (i.e constraint 3.1 and 
3.2 are not violated). 

The model of a P/T-net  N in PLotos is the process Nl ,n(Ml ,n) .  The next 
lemma demonstrates the consistency of the PLotos model of P/T-nets.  

L e m m a  2 Let N = ( P , T , M )  be a PIT-pe t  and M '  E A f  P be a marking. For 
every i = 1, . . . ,n, let Nl,i  = (P l , i ,T l , i ,Ml , i )  be the subnet defined as above, lhen 
for all t E Tl,i : 

Ml , i ( t  > M~, i r NI,i(MI,i) - t --+ Nl,i(M~,i) 

The proof is by induction on i. 
Let N = (P ,T ,  Act,  M )  be a labelled P/T-net  and let Nl , . (Ml ,n)  be the 

PLotos model of the corresponding unlabelled P/T-net .  We may add labels 
al, ..., al in Act,  of transitions in T, to the PLotos model as follows: 

p rocess  

w h e r e  
p rocess  

LabelledNl,n ( Ml,n )[al, ..., al] :noexi t := 
h ide  tl,  ...,tin in  A[al, . . . ,a l , t l ,  ...,t,~] I[tl, ..., tm]l Nl ,n(Ml ,~)[ t l ,  ...,t,~] 

A[al , ..., al, t l , ..., tm]:noexlt  := 
tl; act(t l);  A[al, ..., a l , t l ,  ...,tm] D " " "~ tm; act(tm); A[al,  . . . ,a l , t l ,  ...,tm] 

e n d p r o c  
e n d p r o c  

Note that  in the process LabelledNl,n, the constraint 3.3 is not violated. 

6.  C o n c l u s i o n  

The fact that  PLotos has the computational power of P/T-nets,  with bisimula- 
tion equivalence, means that: 
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1. properties that are decidable for P/T-nets are decidable as well for PLotos, 
and 

2. algorithms for deciding properties of P/T-nets can be adapted to PLotos. 

Furthermore, the aforementioned items are obtained by minimally restricting 
Lotos, since P/T-nets can be modelled by PLotos. We have investigated adap- 
tation of P/T-nets verification techniques to PLotos in Refs. [Barb 91a] and 
[Barb 91b]. 
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Appendix A: Basic Lotos 

A.1. Syntax of Basic Lotos 

We assume that Basic Lotos specifications are constructed as follows: 

specification ::= specification specification-identifier formal-parameter-list 
behavior  

behavior-expression 
[ local-definitions ] 

endspec  

formal-parameter-list ::= [ gate-tuple ] ":" functionality 

gate-tuple ::= "[" gate-identifier-list "]" 

gate-identifier-list ::= gate-identifier { "," gate-identifier } 

functionality ::= exit ] noexi t  
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behavior-expression ::= 
stop 
gate-identifier ";" behavior-expression 
behavior-expression "~" behavior-expression 
process-identifier [ gate-tuple ] 
behavior-expression "llr' behavior-expression 
behavior-expression "1[" gate-identifier-list "]1" behavior-expression 
exit 
behavior-expression ">>" behavior-expression 
behavior-expression "[>" behavior-expression 
hide gate-identifier-list in behavior-expression 

local-definitions ::= where  process-definition { process-definition } 

process-definition ::= 
process process-identifier formal-parameter-list ":=" 

behavior-expression 
endproc  

specification-identifier ::= identifier 

process-identifier ::= identifier 

gate-identifier ::= identifier 

identifier ::= letter [ { normal-character I "-" } normal-character ] 

normal-character ::= letter I digit 

In a "process-definition", the term "behavior-expression" is called the defi- 
ning behavior-expression of the process named "process-identifier". 

A p p e n d i x  B:  T h e  s i m u l a t i o n  o f  a P / T - n e t  in P L o t o s  

P/T-net 

Pl ~ t4 tlXt   
pPQ' -t3 
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Trans l a t i on  of  places 

process Pl It 1]:noexit := 
stop 

endproc 

process token1 [tl]:noexit:= 
tl; stop 

endproc 

process P2 [t 1] :noexit := 
tl; token2[ ]lllp2[tl] 

endproc 

process token2 [ ]:noexit:= 
stop 

endproc 

process p3[t 1, t2] :noexit := 
t l; token3[t2111[pz[tl,t~] 

endproc 

process token3 [tz]:noexit:= 
t~ ;stop 

endproc 

process p4[t2, t3, t4]:noexit:-- 
t2; token, [t3]l I IP4 It2, t3, t4] 

[] 
t4 ;token, It3] I I IP4 [t2, t3~ t4] 

endproc 

process token4[t3]:noexit:= 
t3;stop 

endproc 

Lotos  mode l  of  the  P / T - n e t  

process Nl,l((1))[tl, t2, t3, t4]:noexit:= P1(1) endproc 

process N1,2((1, 0))It1, t2, t3, t,] :noexit:-- P2(0)I[tl] IN1,1 ((1))[t 1, t2, ta, t4] endproc 

process N1,3((1,0, 0))It1, t.9, t3, ta]:noexit:= P3(0)l[tl ] 1N1,2((1, 0))[tl, t2, t3, t4] 
endproc 

process N1,4((1, 0, 0, 0))[tl, t2, t3, t@noexit:= g,(0)l[t~] INl,z((1, 0, 0))[tl, t2, t3, t4] 
endproc 

where 

/:'1 (1) = token1 [till liP1 [tl] 
P2(O) = p2[tl] 
P3(0) = p3[tl,t ] 
p4(O) • p4[t2, t3, t4] 


